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Abstract

Online Convex Optimization is a setting in which a forecaster is to sequentially pre-
dict outcomes. In this thesis we focus on two algorithms in the Online Convex Op-
timization setting, namely Mirror Descent and Exponential Weights. Exponential
Weights is usually seen as a special case of Mirror Descent. However, we developed
an interpretation of Exponential Weights that sees Mirror Descent as the mean
of Exponential Weights, and thus a special case of Exponential Weights. Specif-
ically, different priors for Exponential Weights lead to different Mirror Descent
algorithms. The link between Exponential Weights and Mirror Descent hinges on
the link between cumulant generating functions, related to the prior in Exponential
Weights, and Legendre functions, related to the update step in Mirror Descent.
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Chapter 1

Introduction

Imagine you are a gambler that predicts outcomes of football games coming season.
Say you know ten experts that also predict the outcome of football games and you
want to take their advice. However, you do not know how much to listen to whom,
but you do know how bad or how good the expert predictions were so far. You
want minimize your regret at the end of the season for listening to the experts,
since you want to make as much money gambling as possible. This setting roughly
describes the Prediction with Expert Advice setting, which is a special case of the
Online Convex Optimization setting .

Online Convex Optimization is a sequential prediction setting that proceeds in
rounds in which a forecaster is to predict an unknown sequence of elements. In
each round the forecaster suffers a convex loss, which accumulates over rounds.
An example of a problem that can be modeled in the Online Convex Optimization
setting is given by Hazan (2015). Consider your email service, which has a spam
filter. During the day the spam filter has to classify emails as spam or valid.
The spam filter may represent each email as a vector x ∈ {0, 1}d, where the
number of dimensions d is the number of words in the dictionary. The elements
of the vector are all zero unless a word corresponding to an element in the vector
occurs in the email. The spam filter learns a filter, for example a vector a ∈ Rd.
An email x is now classified by the sign of the inner product between a and x:
ŷ = sign〈x,a〉, where 〈x,a〉 denotes the inner product between vectors x and a
and with ŷ = 1 meaning spam and ŷ = −1 meaning valid. Assuming we know the
true label y ∈ {−1, 1} after classification the spam filter now receives a loss, which
we restrict to convex loss functions, for example the square loss: ˆ̀(ŷ, y) = (ŷ−y)2.
At the end of the day we can now measure something called regret, which embodies
how sorry one feels for choosing a given filter as opposed the best filter. The goal
of algorithms in the Online Convex Optimization setting is to minimize regret.
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In this thesis we focus on three such algorithms, namely the Exponential Weights,
Mirror Descent and Online Gradient Descent algorithms. In the literature, the
Online Gradient Descent and Exponential Weights algorithms are known as spe-
cial cases of the Mirror Descent algorithm. However, a recent observation by
Koolen (2016) changed the understanding of the relationship between Exponen-
tial Weights and Online Gradient Descent: Online Gradient Descent may also be
viewed as a special case of the Exponential Weights algorithm. This raises the
question of whether other Mirror Descent type algorithms are also special cases of
Exponential Weights. Mirror Descent is a class of algorithms that maps param-
eters to a different “mirror” space by so-called Legendre functions and performs
the optimization in the mirror space. Exponential Weights may be initialized
with different choices of priors. In this thesis we show that the Mirror descent
algorithm can be seen as the mean of the Exponential Weights algorithm. We
show that the prior for Exponential Weights is related to the Legendre function
in Mirror Descent: when a Legendre function is a cumulant generating function
of an exponential family, a member of this exponential family is the prior for Ex-
ponential Weights and vice versa. This provides unification and understanding of
a large class of algorithms. Furthermore, this interpretation of the Exponential
Weights algorithm greatly reduces its computational complexity, which makes it
applicable in the Online Convex Optimization setting as opposed to before this
interpretation.

Outline As for the organization of the thesis: in chapter 2 we give a formal in-
troduction to the Online Convex Optimization and Prediction with Expert Advice
settings to detail the Online Gradient Descent, Mirror Descent and Exponential
Weigths algorithm. In chapter 3 the proof of Koolen (2016) is replicated. In chap-
ter 4 the main result of this thesis is presented in Theorem 3: we prove that, under
one condition, the MD algorithm is a special case of the EW algorithm. In chapter
5 we explore when a Legendre function is a cumulant generating function, the con-
dition for Theorem 3. Furthermore, two new and constructive sufficient conditions
for which the relationship between MD and EW holds are given in Theorems 7
and 8. Finally, in chapter 6 some examples of the relationship between the EW
and MD algorithms are given.
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Chapter 2

Online Convex Optimization

The analysis of many efficient online learning tools has been influenced by convex
optimization tools. Most efficient algorithms can be analyzed based on the fol-
lowing model, which summarizes the Online Convex Optimization setting (OCO)
setting (Shalev-Shwartz, 2011):

Input: A convex set S ⊂ Rd

For t = 1, 2, . . . , T
predict a vector wt ∈ S
receive a convex loss function ft : S → R
suffer loss ft(w)

For example, as in the spam filter above, say we receive outcomes yt ∈ {−1, 1}
and predict a weight vector (filter) wt that classifies incoming emails xt at time
t, ŷt = sign〈xt,wt〉. For simplicity we may use ft(w) = (ŷ − yt)2 to evaluate our
performance in a given round, which is convex. At the end of the day, we hope that
we chose the best filter possible, which would have minimized the loss function.

This chapter will describe some algorithms working in this model. We focus on
analyzing the regret, which is measured with respect to a reference weight vector
w ∈ S (Shalev-Shwartz, 2011):

RT (w) =
T∑
t=1

ft(wt)−
T∑
t=1

ft(w). (2.1)

An example of a reference weight vector w would be the minimizer of the cu-
mulative loss,

∑T
t=1 ft(w). We may interpret regret by how sorry a forecaster is

for choosing w1, . . . ,wT instead of choosing w. The goal is to find an algorithm
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that has regret that grows sub-linear with T with respect to any reference weights.
Under appropriate conditions this is achievable by the Online Gradient Descent
(OGD) algorithm (Zinkevich, 2003). Without loss of generality we assume that S
is centered around 0. The OGD algorithm initializes wt as a zero vector 0, then
updates these weights with the following update rule:

wt+1 = wt − η∇ft(wt), (2.2)

with learning rate parameter η > 0, which controls how fast the algorithm learns,
and where∇ft(wt) denotes the gradient of ft atwt (hence online gradient descent).
Intuitively, the OGD algorithm moves wt in the direction of the minimum of ft,
but not by too much because it wants to remember the effect of f1, f2, . . . , ft−1.
The OGD algorithm guarantees regret bounded by (Shalev-Shwartz, 2011):

RT (w) ≤ ||w||
2
2

2η
+
η

2

T∑
t=1

||∇ft(wt)||22. (2.3)

If ||w||2 ≤ B, ||∇ft(wt)||2 ≤ L and η = B
L
√
2T

we obtain:

RT (w) ≤ BL
√

2T , (2.4)

which grows sub-linearly with T .

A generalization of OGD is the Mirror Descent (MD) algorithm. It maps the
weights to a different mirror space with the gradient of a function of type Legendre
before updating the weights and maps them back with the inverse function of the
gradient after the update. A Legendre function has several desirable properties,
which will be discussed in chapter 4. Let φ = ∇F ∗ be the gradient of Legendre
function F ∗. We use F ∗ instead of F for notational purposes, which will become
apparent in section 4.2 when convex conjugates are discussed. The update rule of
the MD algorithm is the following (Shalev-Shwartz, 2011):

wt+1 = φ−1
(
φ(wt)− η∇fi(wt)

)
, (2.5)

where φ−1 is the inverse function of φ. For each different choice of φ this leads
to a different algorithm with different properties. Choosing φ to be the identity
function leads to the OGD algorithm. Setting φ(w) = logw + 1,w ∈ 4, where
4 denotes the probability simplex and log the natural logarithm (henceforth we
shall denote the natural logarithm by log), leads to the Exponential Weights (EW)
algorithm, which is commonly used in the Prediction with Expert Advice setting
to be discussed in section 2.1.
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2.1 Prediction with Expert Advice

Prediction with Expert Advice (PwEA) is a setting in online prediction where, in
each round t, K experts predict an outcome yt. In each round the forecaster has
access to the predictions ŷkt of the experts. On the basis of these expert predictions
the forecaster forms his own predictions by choosing a probability distribution pt
on the experts. The forecaster’s loss becomes ˆ̀

t = E
k∼pt

[`kt ], where `kt = `(yt, ŷ
k
t ) is

the loss of expert k at time t with respect to outcome yt and prediction ŷkt . Loss
ˆ̀
t can be motivated in several ways:

1. If the forecaster randomly chooses an expert k ∼ pt then this is the expected
loss.

2. If ` is linear in the second argument and the forecaster predicts ŷt = Ept [ŷtk],
the mean of the expert predictions, then ˆ̀

t is the forecaster’s loss.

3. If ` is convex in the second argument and the forecaster predicts ŷt = Ept [ŷkt ]

then ˆ̀
t is an upper bound on the forecaster’s loss.

Note that the PwEA setting is a special case of the OCO setting in which weight
vector pt ∈ S is a probability distribution over the experts. In other words, the
role of wt in the OCO setting is played by pt in the PwEA setting. The cumulative
loss is minimized by a distribution p that is a point mass on the single expert that
has the lowest cumulative loss. As with online convex optimization the goal is to
achieve a total loss after T rounds that is not much worse than the total loss of
the best expert, measured by regret:

RT (k) =
T∑
t=1

ˆ̀
t −

T∑
t=1

`kt . (2.6)

As in the online convex optimization setting it is possible to achieve a regret that
grows sublinearly with the number of rounds (Shalev-Shwartz, 2011):

RT (k) ≤
√
T log(K)

2
∀k. (2.7)

The most common algorithm in the PwEA setting to achieve this regret bound is
the Exponential Weights (EW) algorithm (Shalev-Shwartz, 2011):

pt+1(k) =
π(k) exp(−η

∑t
i=1 `

k
i )∑K

k=1 π(k) exp(−η
∑t

i=1 `
k
i )
, (2.8)
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where π is a prior distribution on the experts, usually chosen to be the uniform
distribution over the experts such that π(k) = 1

K
, and η > 0 a parameter of the

algorithm.
∑K

k=1 π(k) exp(−η
∑t

i=1 `
k
i ) is a normalization factor. This algorithm

gives high weights to experts with small losses. If `kt ∈ [0, 1] then the EW algorithm
achieves the following regret bound with a uniform prior (Shalev-Shwartz, 2011):

RT (k) ≤ log(K)

η
+
ηT

8
∀k, (2.9)

which is a trade-off between the number of experts and rounds, regulated by η.

The optimal η is found by η =
√

log(K)
T/8

, which leads to (2.7).
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Chapter 3

Online Gradient Descent as a
special case of Exponential
Weights

In this chapter we elaborate on the proof given by Koolen (2016) that shows that
OGD is a special case of EW. A non-standard interpretation of the EW algorithm
arises if we apply EW with a continuous set of experts and a non-uniform prior
π. We now use pt as the probability distribution over a continuous set of experts
parametrized by z ∈ Rd on time point t and use the mean of pt as weights wt.
As shown by Koolen (2016), with a normal prior the EW algorithm becomes the
Online Gradient Descent algorithm.

We proceed in the OCO setting. In each round t the experts z receive a loss
`zt = 〈z, gt〉. This loss function is motivated by the following. Let ft be a convex
loss function and let f̃t(w) = 〈w, gt〉, with gt = ∇ft(wt). Our regret is then
bounded by:

Rt(w) =
t∑
i=1

fi(wt)− fi(w) ≤
t∑
i=1

f̃i(w)− f̃i(w). (3.1)

The forecaster’s loss ˆ̀
t is:

ˆ̀
t = Ez∼pt [`zt ]

= Ez∼pt [〈z, gt〉]
= 〈Ez∼pt [z], gt〉
= 〈wt, gt〉.

(3.2)
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Thus, if we use wt = Ept [z] in the OCO setting the losses in OCO and PwEA are
equal. In each round we update probability density pt with the following:

pt+1(z) =
π(z) exp(−η

∑t
i=1 `

z
i )∫

Rd π(z) exp(−η
∑t

i=1, `
z
i )dz

, (3.3)

in which our initial choice of the probability density pt is represented by prior π.
The above leads to the following Theorem, which appears to have been published
only as a blog post by Koolen (2016):

Theorem 1. Let pt+1 be the exponential weight distribution at time t + 1 and
wt+1 ∈ S = Rd be the mean of pt+1. If we choose π(z) = N(0, σ2I) and `zi =
〈z, gi〉 the Exponential Weights algorithm yields a multivariate normal distribution
pt+1 = N(wt+1, σ

2I) with mean

E
z∼pt+1

[z] = wt+1

= σ2η
t∑
i=1

gi

= wt − σ2ηgt,

(3.4)

which are the weights of the Online Gradient Descent algorithm with learning rate
σ2η.

Proof. The proof is given by plugging in the multivariate normal density function
for π = N(0, σ2I) and working out the algebra. The multivariate normal density
with mean w and covariance matrix Σ is defined as:

N(w,Σ) = (2π)−
d
2 det(Σ)−

1
2 exp(−1

2
(z −w)TΣ−1(z −w)). (3.5)

We start by computing the numerator of equation 3.3:

π(z)× e−η
∑t
i=1 `

z
i =(2π)−

d
2 det(σ2I)−

1
2 exp(

−〈z, z〉 − 2σ2η〈z,
∑t

i=1 gi〉
2σ2

)

=(2π)−
d
2σ−d exp(−〈z + σ2η

∑t
i=1 gi, z + σ2η

∑t
i=1 gi〉

2σ2
)

exp(
σ2〈η

∑t
i=1 gi, η

∑i
t=1 gi〉

2
).

(3.6)
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which is, up to normalization, the density function for the multivariate normal
distribution N(−ησ2

∑t
i=1 gi, σ

2I). The mean of this distribution is equal to the
updating rule for the gradient descent, with learning rate η∗ = σ2η.

Hence, by Theorem 1 the OGD algorithm is a special case of the EW algorithm
on a continuous set of experts.
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Chapter 4

Mirror Descent is a special case of
Exponential Weights

In Theorem 1 we showed that OGD is a special case of EW. This raises the question
of whether other MD type algorithms are also special cases of the EW algorithm.
In this chapter it is proven that, under some conditions, the MD algorithm can
be seen as a special case of the EW algorithm. As in Theorem 1 viewing the
MD update step (2.5) as the mean of the EW probability distribution yields the
relationship between EW and MD. To identify the relation between MD and EW
in general, we will need to introduce the following three concepts: the Follow
the Regularized Leader algorithm, exponential families of distributions, and the
minimum relative entropy principle.

In section 4.1 we introduce the Follow the Regularized Leader algorithm. The
Follow the Regularized Leader algorithm is used to see the algorithms as similar
minimization problems with different regularization functions. With the Follow
the Regularized Leader representation of MD and EW the only difference be-
tween MD and EW is the regularization function used. The EW algorithm has
the Kullback Leibler divergence as regularization function, which is a measure of
divergence between two distributions. The MD algorithm has the Bregman diver-
gence as regularization function, which can be interpreted as a measure of how
convex a function is. Section 4.2 introduces exponential families, which are sets
of distributions that can be written in a certain form. This form of exponential
families is used in section 4.3 to show a crucial result: the KL divergence between
two members of an exponential family reduces to the Bregman divergence. Section
4.4 presents a technical result from the minimum relative entropy principle. This
result is used to prove that it poses no restriction to minimize the Follow the Reg-
ularized Leader representation of EW over exponential families only. Combined
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these ideas show that MD is a special case of EW. We continue by introducing the
Follow the Regularized Leader algorithm.

4.1 Follow the Regularized Leader

The Follow The Leader (FTL) algorithm and its counterpart the Follow The Reg-
ularized Leader (FTRL) algorithms both work in the OCO setting. The FTL
algorithm does what its name suggests: it follows the weight vector that had the
smallest loss of the preceding rounds:

wt+1 = arg min
w∈S

{
t∑
i=1

fi(w)

}
. (4.1)

However, the FTL algorithm may lead to a regret that grows linearly with the
number of rounds (Shalev-Shwartz, 2011). To overcome this issue the FTRL algo-
rithm was introduced, in which a regularization function is appended to (4.1):

wt+1 = arg min
w∈S

{
t∑
i=1

fi(w) +R(w)

}
, (4.2)

where R : S → R is the regularization function. Different choices for the reg-
ularization function lead to different algorithms, of which three are given in the
following.

Lemma 1 (Shalev-Shwartz (2011)). Let S = Rd, w1 = 0, and ft(w) = 〈w, gt〉.
In the OCO setting Follow The Regularized Leader with regularization R(w) =
1
2η
||wt||22 yields the Gradient Descent algorithm:

wt+1 = arg min
w

{
t∑
i=1

fi(w) +
1

2η
||w||22

}
= wt − η∇ft(wt)

(4.3)

The Exponential Weights algorithm can also be seen as a FTRL algorithm. To
show this we first introduce the Kullback Leibler (KL) divergence (Kullback and
Leibler, 1951). The KL divergence between two discrete distributions p, π ∈ 4,
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where 4 is the probability simplex, is defined as:

KL(p||π) =
K∑
k=1

p(k) log
p(k)

π(k)

= E
k∼p

[log p(k)− log π(k)].

(4.4)

For continuous distributions the summation in (4.4) becomes an integral. The KL
divergence (also known as relative entropy) is a measure of difference between two
distributions. It is not a distance, as it does not obey the triangle inequality nor
does KL(p||π) = KL(π||p) hold in general.

Lemma 2 (Shalev-Shwartz (2011)). In the PwEA setting Follow The Regular-
ized Leader with regularization R(p) = 1

η
KL(p||π) yields the Exponential Weights

algorithm:

pt+1 = arg min
p∈4

{
t∑
i=1

Ek∼p[`kt ] +
1

η
KL(p||π)

}

= k 7→ π(k) exp(−η
∑t

i=1 `
k
i )∑K

k=1 π(k) exp(−η
∑t

i=1 `
k
i )
.

(4.5)

The mirror descent algorithm is a FTRL algorithm if we use the Bregman diver-
gence (Bregman, 1967) in combination with learning parameter η as the regular-
ization function. Bregman divergences are generated by Legendre functions, which
are introduced in the following. A function F ∗ : S → R is called Legendre if it
obeys the following (Cesa-Bianchi and Lugosi, 2006, Chapter 11):

1. S ⊂ Rd is nonempty and its interior is convex.

2. F ∗ is strict convex with continuous first partial derivatives throughout the
interior of S.

3. if x1, x2, . . . , xn ∈ S is a sequence converging to a boundary point in S, then
||∇F ∗(xn)|| → ∞ as n→∞.

The Bregman divergence generated by Legendre function F ∗ for vectors x,y ∈ S
is defined as:

BF ∗(x||y) = F ∗(x)− F ∗(y)− (x− y)∇F ∗(y). (4.6)

Note that the Bregman divergence is not a distance in general, as it does not
satisfy the triangle inequality nor is it symmetric in its arguments. The Bregman
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divergence may be interpreted as the difference between F ∗(x) and the tangent of
F ∗ at y. In other words, the Bregman divergence is a measure of how convex F ∗

is.

Lemma 3 (Shalev-Shwartz (2011)). Let S = Rd and ft(w) = 〈w, gt〉. In the OCO
setting Follow The Regularized Leader with regularization R(w) = 1

η
BF ∗(w||w0),

where w0 denotes the starting weights for the algorithm, yields the Mirror Descent
algorithm:

wt+1 = arg min
w

{
t∑
i=1

fi(w) +
1

η
BF ∗(w||w0)

}
= φ−1

(
φ(wt)− η∇fi(wt)

)
,

(4.7)

with φ = ∇F ∗.

As before, both the EW and GD algorithm are usually seen as special cases of the
MD algorithm. If we set F ∗ to the negative entropy F ∗(p) =

∑
k p(k) log p(k) and

the second argument to some arbitrary distribution π we obtain the KL divergence
with respect to π. In turn, this yields the FTRL representation of the Exponential
Weights algorithm. If we set F ∗ to half the squared L2 norm (F ∗(w) = 1

2
||w||22)

and set the second argument of the Bregman Divergence to a zero vector we obtain
the FTRL representation of the Gradient Descent algorithm.

4.2 Exponential families

In order to show that the KL divergence between two members of the same ex-
ponential family reduces to the Bregman divergence we first need to introduce
exponential families. Exponential families are sets of distributions that share im-
portant properties and can be written in a certain form. The multivariate normal
and many other common distributions such as the multinomial, gamma and Pois-
son distributions are exponential families. The following will introduce exponential
families and some of their properties.

An exponential family can be written in the following form:

pθ(z) = e〈θ,T (z)〉−F (θ)K(z). (4.8)

Here, θ is called the natural parameter vector coming from the non-empty, convex,
open parameter space Θ. We use T (z) to denote the sufficient statistic of the dis-
tribution, which completely summarizes the data to recover the density function.
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Furthermore, we require T (z) to be minimal, which is to say that the components
of T (z) are affinely independent, i.e., @ a non-zero a ∈ Rd such that 〈a, T (z)〉 = b
(a constant). Furthermore, K(z) is called the carrier measure and F (θ) is known
as the cumulant generating function. Cumulant generating function F is a func-
tion of Legendre type (Barndorff-Nielsen, 1978, Theorems 8.2, 9.1, and 9.3). We
may interpret F as the logarithm of the normalization factor:∫

Rd
e〈θ,T (z)〉−F (θ)K(z)dz = 1

⇔ F (θ) = log

∫
Rd
e〈θ,T (z)〉K(z)dz.

(4.9)

The expectation of a member of an exponential family and its natural parame-
ters have a one to one relationship (Barndorff-Nielsen, 1978, Theorem 8.1), which
can be shown using conjugate functions. The expectation of a member of an ex-
ponential family is computed by (Barndorff-Nielsen, 1978, Theorem 8.1): µ =
E
z∼pθ

[T (z)] = ∇F (θ). The conjugate function of F , F ∗, is given by:

F ∗(µ) = sup
θ
{〈θ,µ〉 − F (θ)}, (4.10)

where sup denotes the supremum and µ represents the expectation vector of pθ.
Since F is a Legendre function, F ∗ is also a Legendre function (Cesa-Bianchi and
Lugosi, 2006, chapter 11). The conjugate function of F ∗ is again F (Cesa-Bianchi
and Lugosi, 2006, chapter 11). Note that 〈θ,µ〉 ≤ F (θ) + F ∗(µ), with equality if
and only if µ = ∇F (θ).

In section 4.1 it was mentioned that F ∗ was used instead of F to generate Bregman
divergences for notational purposes. This is because we actually use the convex
conjugate of F to generate the Bregman divergence. We do this to exploit the
relationship between the KL divergence for two members of the same exponential
family and the Bregman divergence, which is detailed in Theorem 2 below.

4.3 KL divergence is Bregman divergence

The above definition of exponential families leads to the following crucial connec-
tion between the Kullback-Leibler divergence between two members of the same
exponential family and the Bregman divergence.

15



Theorem 2 (Banerjee et al. (2005); Nielsen and Nock (2010)). The KL divergence
between two members of the same exponential family, pθ and πθ, with cumulant
generating function F can be expressed by the Bregman divergence between their
natural parameters, θp and θπ, or their expectation parameters, µp and µπ. The
first Bregman divergence is generated by the cumulant generating function F and
the secend Bregman divergence is generated by the convex conjugate of the cumulant
generating function F ∗:

KL(pθ||πθ) = BF (θπ||θp) = BF ∗(µp||µπ). (4.11)

The proof follows from computing the KL divergence between two members of the
same exponential family:

Proof.

KL(pθ||πθ) = E
z∼pθ

[
log pθ(z)− log πθ(z)]

]
= E

z∼pθ

[
〈θp, T (z)〉 − F (θp) + log(K(z))− 〈θπ, T (z)〉+ F (θπ)− log(K(z))

]
= 〈θp − θπ, E

z∼pθ
[T (z)]〉 − F (θp) + F (θπ)

= F (θπ)− F (θp)− 〈θπ − θp,∇F (θp)〉
= BF (θπ||θp).

(4.12)

To show that BF (θπ||θp) = BF ∗(µp||µπ) we use the convex conjugate of F :

BF (θπ||θp) = F (θπ)− F (θp)− 〈θπ − θp,∇F (θp)〉
= 〈θπ,µπ〉 − F ∗(µπ)

)
−
(
〈θp,µp〉 − F ∗(µp)

)
− 〈θπ − θp,µp〉

= F ∗(µp)− F ∗(µπ) + 〈θπ,µπ〉 − 〈θp,µp〉 − 〈θπ,µp〉+ 〈θp,µp〉
= F ∗(µp)− F ∗(µπ)− 〈µp − µπ,θπ〉
= F ∗(µp)− F ∗(µπ)− 〈µp − µπ,∇F ∗(µπ)〉
= BF ∗(µp||µπ)

(4.13)
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4.4 Minimum relative entropy principle

To apply Theorem 2 to Exponential Weights we need to show that a member of
an exponential family reaches the minimum in the FTRL representation of EW.
We utilize a technical result from the literature on the minimum relative entropy
principle (Jaynes, 1957; Grünwald, 2007, Chapter 19). Say we have to make an
initial guess about the weights for the experts with some distribution π and then
learn that E[z] = µ. The minimum relative entropy principle tells us to choose
the distribution p with E

z∼p
[z] = µ that is closest in KL divergence to π:

pmre = arg min
p∈Pµ

KL(p||π), (4.14)

where Pµ is defined as:

Pµ = {p : E
z∼p

[z] = µ}. (4.15)

Let Eπ = {p : e〈z,θ〉−F (θ)π(z)} be an exponential family with cumulant generating
function F , sufficient statistic z, and carrier π(z). It can be shown that if pθ ∈ Eπ
exists such that Epθ [z] = µ then pmre = p.

Summarizing, we obtain the following Lemma.

Lemma 4. For any µ, the minimum in

arg min
p∈Pµ

KL(p||π), (4.16)

is achieved by pθ ∈ Eπ such that Epθ [z] = µ, provided such a pθ exists.

4.5 MD is a special case of EW

In this section the main result of the Thesis is presented. We exploit the relation-
ship between the KL divergence and Bregman divergence to show that the Mirror
Descent algorithm is a special case of the Exponential weights algorithm.
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Theorem 3. Let pt+1 be the Exponential Weights distribution at time t + 1 with
prior π, let the loss of expert z be `zt = 〈z, gt〉, let the forecasters loss be ˆ̀

t =
E

z∼pt+1

[〈z, gt〉], and let F be the cumulant generating function of Eπ. Let Mirror

Descent be used with Bregman divergence BF ∗ generated by F ∗, the convex conju-
gate of cumulant generating function F . Then the Mirror Descent algorithm is the
mean of the Exponential Weights algorithm:

E
z∼pt+1

[z] = wt+1 = φ−1
(
φ(wt)− η∇fi(wt)

)
, (4.17)

where φ = ∇F ∗.

Proof. We utilize the FTRL representation of both the EW algorithm and MD
algorithm. Let θπ denote the natural parameter of π and let wπ denote the
expectation of π. Recall the FTRL representation of the Exponential Weights
algorithm:

pt+1 = arg min
p∈Eπ

{
t∑
i=1

E
z∼p

[〈z, gt〉] +
1

η
KL(p||π)

}
,

(4.18)

where we may restrict p to Eπ due to Lemma 4. For any p ∈ Eπ the expression
inside the curly brackets in (4.18) reduces to:

t∑
i=1

E
z∼p

[〈z, gt〉] +
1

η
KL(p||π) =

t∑
i=1

〈w, gi〉+
1

η
BF (θπ||θ)

=
t∑
i=1

〈w, gi〉+
1

η
BF ∗(w||wπ),

(4.19)

where w is the expectation and θ is the natural parameter of some p ∈ Eπ. Both
steps in (4.19) follow from Theorem 2. The EW distribution pt+1 has expectation
parameter w that minimizes the expression in (4.19). Hence, to find E[z]

z∼pt+1

we find

the w that minimizes the expression in (4.19):

E[z]
z∼pt+1

= arg min
w

{
t∑
i=1

〈w, gi〉+
1

η
BF ∗(w||wπ)

}
, (4.20)

which is the FTRL representation of the Mirror Descent algorithm.
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For example, we may use the exponential family representation of the multivariate
normal distribution with the identity matrix as covariance matrix:

θ = w

F (θ) =
1

2
||θ||22

F ∗(w) =
1

2
||w||22

T (z) = z

K(z) = (2π)−
d
2 e−

1
2
〈z,z〉.

(4.21)

Now we use Theorem 3 and obtain:

E
z∼pt+1

[z] = wt − ηgt, (4.22)

which is the update step of the Gradient Descent algorithm.
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Chapter 5

When is a function a cumulant
generating function?

In this chapter the condition in Theorem 3 is explored. The condition is that
the dual of function F ∗ from which the Bregman divergence BF ∗ is generated is
the cumulant generating function of an exponential family. Previous studies by
Banerjee et al. (2005) relate cumulant generating functions to exponentially convex
functions (Akhiezer, 1965; Ehm et al., 2003). A function is called exponentially
convex if it is positive definite. In turn, this gives the result that every positive
semi-definite function is a cumulant generating function. However, the positive
semi-definiteness of a function is a technical condition that is difficult to interpret
and also non-constructive: the fact that a corresponding exponential family exists
does not tell us what that family is. It gives little insight into the carrier measure,
or in our case prior that corresponds to an exponentially convex function. To
find a simpler, more constructive condition for when a function is a cumulant
generating function we explore the relation between cumulant generating functions,
moment generating functions, characteristic functions, Laplace transforms, and
Fourier transforms.

In the following we introduce exponentially convex functions, Fourier tranforms,
as well as two generating functions: the moment generating function (MGF) and
the characteristic function (CF). Exponentially convex functions are introduced in
section 5.1 and are used to provide a necessary and sufficient condition for a func-
tion to be a cumulant generating function. To obtain a probabilistic interpretation
of exponentially convex functions and to obtain the link with Fourier transforma-
tions we introduce generating functions in section 5.2. Fourier transformations
are used to gain access to inversion formulas to find the carrier (or prior). These
inversion formulas are introduced in section 5.3 as well as a saddle point approx-
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imation to the inversion formulas. Furthermore, in section 5.3 the saddle point
approximation is used to develop Theorem 7, in which we present a new sufficient
condition for a function to be a cumulant generating function. In section 5.4 the
bijection between exponentially convex functions and Fourier transformations of
non-negative functions due to Ehm et al. (2003) is formally stated. In combination
with a Lemma from Wendland (2004) and the derivation of the saddle point ap-
proximation this bijection leads to a second new sufficient condition for a function
to be a cumulant generating function in Theorem 8.

5.1 Exponentially convex functions

Banerjee et al. (2005) gives a bijection between exponentially convex functions
and cumulant generating functions. A function ψ : Θ→ R++,Θ ∈ Rd, where R++

denotes the positive reals, is called exponentially convex if

n∑
i,j=1

ψ(θi − θj)ci, cj ≥ 0, (5.1)

for any set {θ1, . . . ,θn} with θi + θj ∈ Θ, ∀i, j, {c1, . . . cn} ∈ C, where C denotes
the complex plane and cj denotes the complex conjugate of cj.

The crucial property of exponentially convex functions we require is the following.
If and only if a function ψ is exponentially convex there exists a unique, bounded,
non-negative measure K such that ψ can be represented as (Devinatz et al., 1955):

ψ(θ) =

∫
Rd
e〈x,θ〉K(x)dx. (5.2)

If one compares the definition of a cumulant generating function (see equation
(4.9)) with (5.2) then it is tempting to say that a cumulant generating function F
is the logarithm of an exponentially convex function ψ: F (θ) = logψ(θ). Banerjee
et al. (2005) does exactly that and formally derives a bijection between cumulant
generating functions and exponentially convex functions.

Theorem 4 (Banerjee et al. (2005)). Let ψ : Θ→ R++ be an exponentially convex
function such that Θ is open and F (θ) = logψ(θ) is strictly convex. Then F is the
cumulant generating function of an exponential family. Conversely, if F (θ) is the
cumulant generating function of an exponential family, then ψ(θ) = exp(F (θ)) is
an exponentially convex function.
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5.2 Generating functions

To gain a probabilistic interpretation of exponentially convex functions and find
a link with Fourier transforms two generating functions are introduced: moment
generating and characteristic functions. The link with Fourier transforms gives us
access to inversion integrals, which will be used in the derivation of two sufficient
conditions for a function to be a cumulant generating function. The moment
generating function of distribution p is a function Mp : Rd → R which is defined
as the Laplace transform of p (Billingsley, 2008, Section 21):

Mp(θ) =

∫
Rd
e〈θ,x〉p(x)dx

= E
x∼p

[e〈θ,x〉],
(5.3)

with θ ∈ Rd.

To relate moment generating functions to exponential families consider the fol-
lowing. Let F be the cumulant generating function of an exponential family with
carrier K(x) and sufficient statistic T (x) = x. If F (0) = 0, then since K(x) is
always positive, K(x) is a probability distribution:

1 = eF (0) =

∫
Rd
e〈x,0〉K(x)dx =

∫
Rd
K(x)dx. (5.4)

This opens up the relationship with moment generating functions. The cumulant
generating function F of the exponential family with sufficient statistic x and
carrier p is the logarithm of the moment generating function of p (Jørgensen and
Labouriau, 2012): logMp(θ) = F (θ). The domain of Mp and F is Θ = {θ ∈ Rd :
Mp(θ) <∞}. Note that 5.3 gives a relation with exponentially convex functions.
Since p(x) is non-negative and bounded Mp is an exponentially convex function
(see equation (5.2)).

The characteristic function ρp of any random variable always exists and uniquely
determines its distribution function (Shiryaev, 1996, Chapter 12). The character-
istic function of p is defined as the Fourier transform of p:

ρp(θ) =

∫
Rd
ei〈θ,x〉p(x)dx, (5.5)
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where i is the imaginary number. There is a relationship between moment gen-
erating and characteristic functions: ρp(θ) = Mp(iθ) (Jørgensen and Labouriau,
2012). A necessary and sufficient condition for a function to be a characteristic
function is given by the Bochner-Khinchin Theorem:

Theorem 5 (Bochner (1933)). Let ρ(s) be continuous, s ∈ S = Rd, with ρ(0) = 1.
A necessary and sufficient condition that ρ is a characteristic function is that it
is positive semi-definite, i.e. that for any set {s1, . . . , sn} ⊆ S with si + sj ∈ S,
∀i, j, and c ∈ C

n∑
i,j=1

ρ(si − sj)cicj ≥ 0. (5.6)

The Bochner-Khinchin Theorem tells us that if and only if a function is positive
semi-definite then it is a characteristic function. Dropping the condition that
ρ(0) = 1 gives us a necessary and sufficient condition for ρ to be the Fourier
transform of a finite non-negative measure on Rd. This is the same condition
as for a function to be called exponentially convex (Akhiezer, 1965; Ehm et al.,
2003). Some properties of positive semi-definite functions are given by the following
Lemma:

Lemma 5 (Shiryaev (1996), Chapter 12; Wendland (2004), Theorem 6.2). Let ρp
be a positive semi-definite function, then ρp has the following properties:

1. |ρp(θ)| ≤ ρp(0).

2. ρp is uniformly continuous for θ ∈ Rd.

3. ρp(θ) = ρp(−θ), where ρp(−θ) denotes the complex conjugate of ρp(−θ).

4. ρp(θ) is real valued if and only if p is symmetric.

5. ρp(0) ≥ 0 .

The properties in Lemma 5 give necessary conditions for both positive semi-definite
and characteristic functions: if any of the above does not apply to a function then
it is not positive semi-definite.

5.3 Inversion of generating functions

In order to derive new sufficient conditions for a function to be a cumulant generat-
ing function we utilize inversion integrals of characteristic and moment generating
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functions. To find a distribution given a moment generating Mp or characteristic
function ρp we may employ the following inversion formula (Daniels, 1954):

p(x) =
1

(2π)d

∫
Rd
ρp(θ)e−i〈θ,x〉 dθ

=
1

(2π)d

∫
Rd
Mp(iθ)e−i〈θ,x〉 dθ.

(5.7)

An alternative, equivalent inversion integral to find the distribution is given by the
following (Daniels, 1954):

p(x) =
1

i(2π)d

∫ γ+i∞

γ−i∞
eF (T )−〈T,x〉 dT, (5.8)

where F = log(Mp), T = θ + iy, T ∈ Cd, and γ ∈ Θ.

In order to derive a new sufficient condition for a function to be a cumulant gener-
ating function we make use of saddle point approximations. Saddle point approx-
imations are used in asymptotics to find accurate approximations to integrals like
(5.8). To derive a new sufficient statistic we make use of a saddle point approxi-
mation due to Daniels (1954), who used it to approximate the density function pn
of the mean of n i.i.d. variables.

Theorem 6 (Reid (1988)). Let x1, . . . ,xn be independent, identically distributed
random vectors from a density p on Rd and let F (θ) the cumulant generating
function of p. The saddle point expansion of density of the mean x = 1

n

∑n
i=1 xi

is given by:

pn(x) = (2π)−
d
2

(
n

det(∇2F (T0))

) 1
2

en(F (T0)−〈T0,x〉)(1 +Rn), (5.9)

where Rn is the remainder term, T0 ∈ Rd is the saddle point, and ∇2F (T0) is
the Hessian of F . The right hand side of (5.9), excluding the 1 + Rn factor, is
called the saddle point approximation g(x). The saddle point T0 is found when the
following holds true:

∇F (T0) = x. (5.10)

24



The saddle point exists if the convex conjugate of F exists (Reid, 1988). This leads
to a different expression for g(x) given by (McCullagh, 1987, Chapter 6):

g(x) = (2π)−
d
2 (n det(∇2F ∗(x)))

1
2 e−nF

∗(x)) (5.11)

The saddle point approximation can also be applied to approximate the carrier
measure of a member of the exponential family (Reid, 1988). Let F be a cumulant
generating function. The saddle point approximation of the carrier is given by
(5.11). The saddle point approximation p̃ to said exponential family for n = 1 is
now given by:

p̃(x) = e〈θ,x〉−F (θ)g(x). (5.12)

It is not guaranteed that (5.12) integrates to 1. In fact, it may integrate to some
function b : Θ→ R++: ∫

Rd
e〈θ,x〉−F (θ)g(x)dx = b(θ)

⇔
∫
Rd
e〈θ,x〉g(x)dx = b(θ)eF (θ).

(5.13)

However, if (5.12) integrates to a constant then eF (θ) is positive semi-definite,
which is shown in the following Theorem.

Theorem 7. Legendre functions F for which∫
Rd
e〈θ,x〉−F (θ)(2π)−

d
2 (det(∇2F ∗(x)))

1
2 e−F

∗(x))dx (5.14)

integrates to a constant b independent of θ are cumulant generating functions of
exponential families with carrier 1

b
g(x) = 1

b
(det(∇2F ∗(x)))

1
2 e−F

∗(x)).

Proof. Let g(x) (as constructed in (5.11)) denote the saddle point approximation
to the carrier measure for n = 1. We construct a distribution with (5.12). Now,
using (5.13):

n∑
i,j=1

beF (θi+θj)cicj =
n∑

i,j=1

cicj

∫
Rd
e〈θi+θj ,x〉g(x)dx

=

∫
Rd

n∑
i=1

cie
〈θi,x〉

n∑
j=1

cje
〈θj ,x〉g(x)dx

=

∫
Rd

[ n∑
i=1

cie
〈θi,x〉

]2
g(x)dx

≥ 0,

(5.15)
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where the last equation holds because g(x) is positive by construction and we may
move the summation past the integration sign due to Tonelli’s theorem (Tonelli,
1909). Now, noting that b is a positive constant means that eF is positive semi-
definite. Furthermore, F may be represented as:

F (θ) = log

∫
Rd
e〈θ,x〉

1

b
g(x)dx, (5.16)

which concludes the proof.

Examples of Legendre functions F : Θ→ R that satisfy the condition of Theorem
7 are given by Blæsild and Jensen (1985): F (θ) = 1

2
||θ||22,θ ∈ Rd, the cumulant

generating function of the normal distribution, and F (θ) =
∑d

i=1 Γ(θi + 1) −
(θi + 1) log(−k),θ ∈ (−1,∞)d, k is fixed, and Γ denotes the gamma function;
the cumulant generating function of the gamma distribution. Another example is
given by F (θ) =

∑d
i=1− log(−θi) with θ ∈ Rd

−−, where R−− denotes the negative
real numbers. The proof of this example is given in chapter 6.

5.4 Bijection exponentially convex functions and

Fourier transforms

This section will formally state the relation between positive definite functions and
exponentially convex functions in order to derive a new sufficient condition for
functions to be cumulant generating functions. Furthermore, we give a sufficient
condition for a function to be positive definite due to Wendland (2004). Ehm et al.
(2003) gives a bijection between exponentially convex and positive semi-definite
functions. If ψ is an exponentially convex function then it is analytic and ψ(iθ) is
the Fourier transform of a non-negative Borel measure. A function is analytic if
a function can be represented as a power series that converges everywhere on its
domain:

ψ(θ) =
∞∑
i=1

anθ
n. (5.17)

Note that all elementary functions are analytic (Parks and Krantz, 1992). Any
products, sums, or compositions of analytic functions are also analytic. Exam-
ples of analytic functions are exponentials, polynomials, trigonometric functions,
and the natural logarithm. The inversion integral in (5.7) combined with the bi-
jection between exponentially convex functions and Fourier transforms yields a
route to find if a function is positive definite, a stricter condition than positive
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semi-definite. For positive definite functions the equation in Theorem 5 becomes
a strict inequality. We now give a sufficient condition for a function to be positive
definite.

Lemma 6 (Wendland (2004), Theorem 6.11). Let ρ : Θ → C be a bounded con-
tinuous function where

∫
|ρ(θ)|dθ < ∞. Then ρ is a positive definite function if

and only if
1

(2π)d

∫
Rd
ρ(θ)e−i〈θ,x〉dθ > 0. (5.18)

That is, if and only if the inverse Fourier transform of ρ is non-negative and not
identically equal to zero then ρ is a positive definite function.

5.5 Application to Legendre functions

To apply the above theory to exponents of Legendre functions we combine the
ideas from Ehm et al. (2003), Wendland (2004), and Daniels (1954) to derive a
new sufficient condition for a function to be positive semi-definite. Specifically, we
use the bijection between exponentially convex functions and positive semi-definite
functions to be able to use the Fourier inversion integral in (5.7). Then we use
the derivation of the saddle point approximation by Daniels (1954) to show that
the inverse Fourier transorm is always positive, which leads to the results that
the exponent of the original function is positive definite by Lemma 6. First we
require a brief introduction in contour integration. We omit proofs of the following,
instead we prefer an informal, visual approach which gives some intuition on the
ideas that are used by Daniels (1954).

Say we want to solve an integral like 1
2πi

∫ γ+i∞
γ−i∞ M(z)dz. This integral is a contour

integral. The contour looks like the image in Figure 5.1. Just as with regular
integration we may split the integral in several parts. For instance, the sum of the
integral from A to B plus the integral from B to A is equal to the integral over the
contour. For analytic functions we may distort the contour while the value for the
integral remains the same. Since moment generating functions are analytic this
distortion is allowed.

Now, lets say the function M(z), with z ∈ C generates the surface plot in Figure

5.2 and say we want to find the value of the integral 1
2πi

∫ γ+i∞
γ−i∞ M(z)dz. The saddle

point is located at the center of Figure 5.2 (with some imagination one can see
a horse saddle here). The idea is to capture as much of the value of integral as
possible in a small as possible part of the contour. This is done by the method of
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Figure 5.1: Example of a contour of integration.

steepest descent, not to be confused with Online Gradient Descent. We arrange the
contour such that most of the contour is where M(z) is small, which is where the
value of the integral is also small. We shall call this part of the integral D1. Then
we go over the saddle point by the steepest possible route to capture as much of
the integral in a small part of the contour as possible, which we will call D2. The
result of all this is that D2 is around the saddle point and is larger than D1 in the
absolute sense.

We continue by combining the ideas of Ehm et al. (2003), Daniels (1954), Wendland
(2004) and derive a, to our knowledge, new sufficient condition for a function to
be a cumulant generating function.

Theorem 8. Let F be an analytic function of Legendre type with

(a) eF (iθ) = eF (−iθ).

(b)
∫
Rd |e

F (iθ)|dθ <∞

(c) |eF (iθ| ≤ B,B ∈ R

Then eF is an exponentially convex function and F is a cumulant generating func-
tion.

Proof. If F is analytic then we may uniquely extend it to the complex plane.
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Figure 5.2: Surface plot of M(z), z ∈ C. The saddle point is located at the center
of the plot.

If eF (iθ) satisfies condition (c) it is bounded. Combined with condition (b) this
makes Lemma 6 applicable. Conditions (b) and (c) tell us that eF (iθ) can be
represented as the Fourier transformation of some not necessary positive function
f̂ : eF (iθ) =

∫∞
−∞ f̂(x)ei〈x,θ〉dx (Wendland, 2004, chapter 6). If the inverse Fourier

transform of eF (iθ) is positive then eF (iθ) is positive definite by Lemma 6. To
guarantee that the inverse Fourier transform of eF (iθ) is real we require condition
(a). Let p be the inverse Fourier transform of eF (iθ), then:

p(x) =
1

(2π)d

∫ ∞
−∞

eF (iθ)e−i〈θ,x〉 dθ

=
1

(2π)d

∫ ∞
0

eF (iθ)e−i〈θ,x〉 dθ +
1

(2π)d

∫ ∞
0

eF (−iθ)ei〈θ,x〉 dθ

=
1

(2π)d

∫ ∞
0

eF (iθ)e−i〈θ,x〉 dθ +
1

(2π)d

∫ ∞
0

eF (iθ)e−i〈θ,x〉 dθ

=
1

(2π)d

∫ ∞
0

eF (iθ)e−i〈θ,x〉 dθ +
1

(2π)d

∫ ∞
0

eF (iθ)e−i〈θ,x〉 dθ

= 2<
(

1

(2π)d

∫ ∞
0

eF (iθ)e−i〈θ,x〉 dθ)

)
,

(5.19)

where <(z) is the real part of z. To prove that the inverse Fourier transform is
positive everywhere we use the derivation of the saddle point approximation of
inverse Fourier transforms due to Daniels (1954).
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For T = T0 + iy, where T0 is the saddle point, the Fourier inversion integral is
equal to (Daniels, 1954):

p(x) =
1

(2π)d

∫ ∞
−∞

eF (T0+iy)−〈(T0+iy),x〉dy. (5.20)

On any admissible line parallel to the imaginary axis the integral attains its maxi-
mum modulus only where the line crosses the real axis. For on the line T = τ + iy
(Daniels, 1954):

|eF (T )−〈T,x〉| = e−〈τ ,x〉|
∫ ∞
−∞

e〈T,x〉f̂(x)dx|

≤ e−〈τ ,x〉+F (τ ).

(5.21)

Furthermore, by the Riemann-Lebesgue Lemma, as y → ∞, eF (τ+iy) = O( 1
|y|),

which tells us that the integral cannot approach the modulus of the integral ar-
bitrarily as y → ∞ (Daniels, 1954). The contour of integration is deformed in
the complex plane with the curve of steepest descent approach. We focus on two
parts of the integral, the integral on the curve of the steepest descent, which we
will call D2, and the remainder of the integral, which we will call D1. On the
steepest descent curve, F (T )− 〈T,x〉 is real and eF (T )−〈T,x〉 decreases steadily on
each side of T0 (Daniels, 1954). Since the integral contains most of its value in
the neighborhood of the saddle point, which is on the real axis, we are guaranteed
that D2 > |D1| (Daniels, 1954). For Legendre functions the saddle point T0 exists
and the integral that appears in (5.20) is positive and real: the sum of D1 and
D2 must be real by condition (a), D2 > |D1|, and since D2 > 0, D2 + D1 > 0.
Hence, the Fourier inversion of eF (iθ) is positive, which means eF (iθ) is positive def-
inite by Lemma 6, eF (θ) is exponentially convex, and F is a cumulant generating
function.
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Chapter 6

Examples of update steps

In this chapter some examples of update steps for different prior distributions are
given. First we show that pt+1, the update step for the EW algorithm, is an
exponential family with carrier π. Next we start with some Legendre functions
and give give some examples of prior distributions. Finally, some examples of prior
distributions and related means are given.

Let π be a member of an exponential family with natural parameter θπ. For
`zi = 〈z, gi〉 the update step for the EW algorithm is:

pt+1(z) =
π(z) exp(−η

∑t
i=1 `

z
i )∫

Rd π(z) exp(−η
∑t

i=1 `
z
i )dz

, (6.1)

Note that the update step is equal to exponentially tilting π (see Escher (1932)).
Let θπ be the natural parameter of π, then:

pt+1(z) =
π(z) exp(−η

∑t
i=1〈z, gi〉)∫

Rd π(z) exp(−η
∑t

i=1, 〈z, gi〉)dz

=
exp(−Fπ(θπ) + 〈θπ, z〉 − η

∑t
i=1〈z, gi)Kπ(z)

exp(Fπ(θπ − η
∑t

i=1 gi)− Fπ(θπ))

= exp(−Fπ(θpt+1) + 〈θπ − η
t∑
i=1

gi, z〉)Kπ(z)

= exp(−Fπ(θpt+1) + 〈θpt+1 , z〉)Kπ(z).

(6.2)

Hence, pt+1 is a member of the exponential family with cumulant generating func-
tion Fπ(θpt+1), natural parameter θpt+1 = θπ − η

∑t
i=1 gi, sufficient statistic z,
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and carrier measure Kpt+1(z) = Kπ(z). The mean of this distribution can now
be found with µpt+1 = ∇Fpt+1(θpt+1). Note that the cumulant generating function
and the natural statistic are the only parts of π we require to find the weights for
subsequent rounds. The computational complexity of updating p is linear in the
number of rounds, which makes EW applicable in large scale problems.

6.1 From Legendre function to prior

Figure 6.1: Bivariate standard normal contour plot on z ∈ [−2, 2]2. The scale goes
from white (high) to green (low).

In this section we give some application of the theory developed in chapter 5
to find a prior for a given Legendre function. We start with a trivial example,
namely F (θ) = 1

2
||θ||22. For this example we will apply Theorem 8. Since F

is a polynomial it is analytic and we may extend it to the complex plane. We
have eF (iθ) = e−

1
2
||θ||22 after which condition (a) from Theorem 8 is trivial. As for

condition (b):
∫
|e− 1

2
||θ||22|dθ <∞. Condition (c) is simply noting that |e− 1

2
||θ||22| ≤

|e− 1
2
||0||22|. Hence, we may conclude that 1

2
||θ||22 is a cumulant generating function.

The carrier can be found explicitly in this case. Omitting the derivation, the
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Fourier inversion integral yields (2π)−
d
2 e−

1
2
||z||22 , the carrier for the standard normal

distribution. The carrier is also the prior for the EW algorithm in this case. The
prior is visualized for z ∈ [−2, 2]2 in Figure 6.1. We see that when z is further
from the origin the prior density diminishes.

Figure 6.2: Numerical evaluation of (5.8) for F (θ) =
∑2

i=1 θi log θi, z ∈ [−5, 5].
The scale goes from white (high) to green (low).

A less trivial application of Theorem 8 is given by F (θ) =
∑d

i=1 θi log θi, θ ∈
Rd

++, where Rd
++ denotes the positive reals. Note that when θ is restricted to

the probability simplex this is the negative entropy. Since F is a product of
elementary functions it is analytic. We continue for d = 1 for simplicity. As for

condition (a): e−iθ log−iθ = e−
θπ
2
−iθ log θ = e−

θπ
2
+iθ log θ = eiθ log iθ. As for condition

(b): |eiθ log iθ| = |(iθ)(iθ)| = e−θ arg(iθ), where arg(ix) is the arg function, which gives
the angle between the positive real axis and the line between its argument and the
origin. The arg function for purely imaginary numbers iy is sign(y)π

2
. We have that∫

|e−θ arg(iθ)|dθ < ∞. Condition (c) is also satisfied, |e−θ arg(iθ)| ≤ |e−0 arg(i0)|, and
thus F is a cumulant generating function. Finding the carrier for F is problematic
since neither inversion integral is easy to solve for this function and Theorem 7 does
not work. However, we may still numerically evaluate the integral in (5.8). For
z ∈ [−10 : 10]2 the integral in (5.8) yields Figure 6.2. Software used for inversion
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was R (R Core Team, 2016) with the package ”Inversion of Laplace-Transformed
Functions” (Barry, 2015). We see an asymmetrical contour plot, which agrees with
4. in Lemma 5: eF (iθ) is real if and only if the prior is symmetric. We see that if
we move z away from the origin in the direction of (−∞,−∞) the density quickly
diminishes. As opposed to the prior for F (θ) = 1

2
||θ||2 we see that the density

does not diminish as quickly in the other directions.

Figure 6.3: Contour plot for the exponential family associated with F (θ) =∑d
i=1− log(−θi), θ = −1, and z ∈ [0, 1]. The scale goes from white (high) to

green (low).

An application of Theorem 7 is given by F (θ) =
∑d

i=1− log(−θi) with θ ∈ Rd
−−.

The convex conjugate of F is F ∗(x) =
∑d

i=1− logxi and the Hessian of the dual is
1
x2 . We obtain g(x) = (2π)−

d
2
1
x
elogx = (2π)−

d
2 . Now,

∫
x
e〈x,θ〉+

∑d
i=1 log−θg(x)dx =

(2π)
d
2 , which shows that F is a cumulant generating function and the carrier is

1. Note that this carrier not directly gives us a prior for EW, since this is not
a density function. However, we may use any member of the exponential family
associated with F , which is the exponential distribution, as a prior. For θ = −1,
x ∈ [0, 3]2 this prior produces the contour plot in Figure 6.4. We see that as we
move away from the origin to (∞,∞) the density diminishes orthogonal to the
line from the origin to (∞,∞).
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6.2 From prior to update step

Prior distribution F (θ) µpt+1

Multivariate Gaussian with

identity covariance 1
2
||θ||22 θπ − η

∑t
i=1 gi

Poisson (d = 1) exp(θ) exp(θπ − η
∑t

i=1 gi)

Binomial (d = 1) N log(1 + exp(θ))
N exp(θπ−η

∑t
i=1 gi)

exp(θπ−η
∑t
i=1 gi)+1

Exponential (d = 1) − log(−θ) 1
−θπ+η

∑t
i=1 gi

Chi squared (d = 1) log Γ(θ + 1) + (θ + 1) log 2 Ψ0(θπ − η
∑t

i=1 gi + 1) + log 2
Centered laplacian (d = 1) log(− 2

θ
) 1

−θπ+η
∑t
i=1 gi

Negative entropy
∑d

i=1 θi log θi log(θπ − η
∑t

i=1 gi) + 1
Negative binomial (d = 1)

with number of failures r −r log(1− e−θ) −re−θπ+η
∑t
i=1 gi − 1

Table 6.1: Prior distributions, their cumulant generating functions, and updated
means. As for notiation: Γ denotes the gamma function and Ψ0 denotes the
polygamma function of order 0.

Examples of prior distributions, their cumulant generating functions, and updated
means can be found in Table 6.1. Most distributions are given in one dimension,
but the cumulant generating functions are easily extended to multiple dimensions.
To extend the cumulant generating functions we simply evaluate F at every el-
ement of the natural parameter vector and sum the results. The mean becomes
a vector that is the derivative of F evaluated at the elements of the natural pa-
rameter vector. Figure 1 shows the effect on the mean as η

∑t
i=1 gi changes. For

example, we see that the for the standard multivariate normal the mean just lin-
early grows as we get closer to the minimum of the loss functions. A different
pattern occurs for the Poisson: the mean grows exponentially as the loss goes to
the minimum. The other distributions have upper bounded means, which tells us
that no single element in z can grow too important for subsequent rounds.
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Figure 6.4: Changes in mean as the sum of η
∑t

i=1 gi changes for the distributions
in Table 6.1 .
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Chapter 7

Conclusion and Future work

In Theorem 3 we have shown that the Mirror Descent algorithm, under a single
condition, can be seen as the mean of the Exponential Weights algorithm. Our
analysis gives a large class of algorithms in the Online Convex Optimization set-
ting a new interpretation: the update step is updating a distribution and taking
the mean of said distribution as the weights for the coming round. Furthermore,
two relatively simple and constructive sufficient conditions to see whether a Leg-
endre function is a cumulant generating function were given in Theorems 7 and 8.
These sufficient conditions are constructive in that they provide methods to find
the corresponding prior distribution of a Legendre function. We have provided
simple (and fast) update steps for the EW algorithm. Only the natural parame-
ter of the prior distribution needs to be updated. This gives the EW algorithm
a computational complexity that is linear in the number of rounds which makes
EW scalable and approriate for large scale machine learning tasks. The applica-
tion and implementation of the EW algorithm is significantly simplified by this
development.

As for future work, this interpretation of EW provides a means to export exten-
sions developed in the EW world to the MD world. For example: recently Koolen
and Van Erven (2015) developed a means to learn the learning rate η, which was re-
garded as a fixed constant in this thesis. Or one could image a problem in which the
experts are not independent of each other. A prior distribution with corresponding
means that models this dependence probably reduces the regret. An example of
such a distribution would be a multivariate normal with covariance other than the
identity matrix. However, to learn the covariance matrix the algorithm probably
needs some adjustments. The relationship between cumulant generating functions
and Legendre functions can probably be further developed. Grünwald and Dawid
(2004) section 7.4.1 gives an alternative representation of the cumulant generating
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function. Here, the cumulant generating function is represented as the convex dual
of the Kullback Leibler divergence. It is easy to show that every (convex dual of)
a Legendre function can be seen as a generalized entropy (Dawid, 1998). However,
it is difficult to prove that this generalized entropy is always a Kullback Leibler
divergence. Reid et al. (2014) conjecture that, up to a constant, every generalized
entropy related to a Legendre Function has the same associated loss function. If
this were the case then the convex dual of every Legendre function, would be a
Kullback Leibler divergence. Nevertheless, it is only a conjecture. Future work
will have to prove this true or false.
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